Surface Operation Automation Research — SOAR —

Dr. Victor H. L. Cheng Optimal Synthesis Inc. Los Altos, California

Virtual Airspace Modeling and Simulation (VAMS)

Air Transportation System Capacity-Increasing Research

Technical Interchange Meeting

January 14–15, 2003

Outline

- Airport Capacity Enhancement Issues
- SOAR Concept
- ATM Automation Functions
- Flight-Deck Automation Functions
- Integrated Operation of SOAR Systems
- System Performance
- Human Performance
- Concept Development and Technology Roadmap

Airport Capacity Enhancement Issues

Quantitative Goals

- Bi-objective airport capacity problem: Pareto frontiers describe balance between departure and arrival traffics.
- Achievable airport capacity can be maximized by lowering priorities of other surface traffic: undesirable taxi delays.
- SOAR concept seeks enhancement with tradeoff between two efficiency factors:
 - Reduction in achievable traffic rate, a penalty on arrival/departure efficiency
 - Increase in taxi delay, a penalty on surface traffic efficiency
- Quantitative goals: enhance and strike balance between these efficiency factors, e.g. simultaneously
 - achieve 90% of the ideal airport capacity
 - maintain cumulative delay to within 10% of the cumulative ideal taxi time

Bi-objective Capacity Optimization

SOAR Concept

- Advanced automation in Centralized Decision-making, Distributed Control (CDDC) paradigm
- Centralized Decision-Making: Ground-Operation Situation Awareness and Flow Efficiency (GO-SAFE) for Surface Traffic Management (STM) Automation
 - Basic functions studied under previous SBIR Phase II effort
- Distributed Control: Flight-deck Automation for Reliable Ground Operation (FARGO) for Flight Deck Automation
 - Feasibility of high-precision taxi control demonstrated in previous SBIR Phase I study
- Integrated operation of both systems
 - GO-SAFE to help issue efficient time-based taxi clearances
 - FARGO to help execute taxi clearances

GFI Model with SOAR Technology Components

STM Automation Functions

- User interface, including situational display for monitoring surface traffic, and alerting of impending problems
 - Updated to allow easy reconfiguration to support Phase II evaluations
- Taxi-route generation and editing
 - Previous taxi-route generation based on dynamic programming for route optimization
 - GO-SAFE software architecture allows inclusion of multiple route-generation techniques
 - Route editing functions enabled by GUI: end-point change, route change, timing change
- Conflict detection and resolution
- Decision support tool for efficient and safe operation

TIM 1/2003

8

Overview of GO-SAFE GUI

Sample Full-Screen Time-Line Display

Sample Full-Screen Load-Graph Display

Conflict Detection and Resolution

- Requirements for conflicts on airport surface not as serious as for IFR flights: in current operations, cockpit crew is responsible for separation while taxiing.
- Conflicts of taxi routes in internal representations of GO-SAFE can be resolved
 - Manually by controller through route editing
 - Automatically by GO-SAFE with timing changes
- All time-based taxi routes must be conflict-free.
- Clearances composed of conflict-free routes will facilitate detection of real-world conflicts
 - Any conflicts caused by flights with cleared routes must mean the flights have deviated from the routes.

Decision Support System

Surface Resource Scheduler

- Runway usage for landing, takeoff and crossing traffic
- Other surface resources: special facilities (e.g. de-icing), identified choke points

Clearance Manager

- Manages and issues advisories/clearances
- Encodes clearances according to route definition, including crossing time restrictions
- Monitors clearances and flight clearance status
- Assists with route changes: "what-if" capability to predict impact of modified routes

Conformance Monitor

- Monitors aircraft compliance with clearances
- Detect incursions and conflicts with other flights or ground vehicles

13

Flight-Deck Automation Functions

- Auto-taxi function
 - Precise control of aircraft taxi to execute clearance
 - Potential use of time-based taxi routes, decoded from clearance
 - Guidance signal for driving pilot interface
- Pilot interface to allow the pilots to perform precision-taxi
 - Far-term: fully automatic taxi
 - Near-term: control signals generated by the auto-taxi function to direct manual control

Auto-Taxi Control

- Nominal guidance assures passenger comfort and safety.
- Must be robust in off-nominal situations: e.g. prolonged flare during landing.

Excessive deceleration

- Speed too high at turnoff
- Arrival too early at scheduled intersection

Pilot Interface Considerations

- Traditional flight director with speed bug is unsuitable.
- Pace-vehicle concept allows separation to increase with speed.
- Special consideration needs to be given to
 - Acceleration/deceleration
 - Stop/go events
- Suitable for HUD implementation: integration with T-NASA

T-NASA Displays

Integrated Operation of SOAR Systems

Operational Implications of SOAR Concept

- Complex taxi routes with time constraints ⇒ data-link clearances preferred over voice communication
- Tower controller
 - Cannot expect immediate acknowledgment
 - Will likely use pre-clearances
- Flight crew
 - Cockpit crew may be distracted from flight control
 - Reading out clearances for agreement between crew members
 - Understanding details of time-based routes
 - Responding via console input
 - Route information can be more easily entered into FMS.
- Use of data-link clearances with encoded taxi routes may change hand-off procedure between local controller and ground controller.

System Performance

Common Performance Factors

- Achievable landing and departure rates
- Surface traffic efficiency in terms of taxi delays
- Workload
- Safety

GO-SAFE

- Scheduler effectiveness
- Taxi routes: efficient and conflict free
- Conformance monitor: warning signs of separation violations
- Controller-interface effectiveness

FARGO

- Taxi-control effectiveness
- Pilot-interface effectiveness
- Conflict detection using ADS-B and TIS-B

Performance Evaluation

- Field Tests: Ultimate operational evaluations
- High-Fidelity Simulations
 - GO-SAFE, PAS or GO-Sim, Aircraft Simulation + FARGO
 - Potentially human in the loop
 - Suitable for evaluation of system and human performance
- Mid-Fidelity Simulations
 - GO-SAFE to schedule and sequence flights, with taxi-route generation to predict timing
 - Operator latency and accuracy can be included in computation
 - Suitable for studying impact of surface traffic on arrival/departure traffics, interface with TRACON traffic
- Low-Fidelity Simulations
 - Empirical formulation of runway capacity for arrival and departure traffics
 - Suitable for assessing impact on system-wide concepts

Human Performance

- Human-Factors Analyses
 - Human-factors experts critiquing individual design features and operational procedures
- Human-in-the-Loop Simulations
 - Controllers evaluating GO-SAFE and pilots evaluating FARGO
 - Pseudo-pilots operating PAS or GO-Sim to increase traffic realism
- Computer Simulations
 - Human behaviors too complex to be adequately modeled in computer simulations
 - Possible to identify required human operator actions in accordance with operational procedures
 - Actions modeled in simulation and data collected
 - Post-simulation analyses to include time and effort considerations in performing required actions, to assess human performance in executing procedures

Concept Development and Technology Roadmap

